Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{4}$, the two carboxylate groups are twisted away from the attached of the naphthalene unit ring by 20.4 (2) and 45.2 (1) ${ }^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

## Comment

1,4-Naphthalenedicarboxylic acid derivatives are a class of intermediates important for applications as monomers in the preparation of polymers (Fukuzumi et al., 1994; Tsukada et al., 1994) or printing receptors (Kuromya et al., 1997). We have recently reported the crystal structure of dimethyl naphtha-lene-1,4-dicarboxylate (Jing et al., 2005). We report here the crystal structure of diphenyl naphthalene-1,4-dicarboxylate, (I).

(I)

The bond lengths and angles in (I) are normal (Table 1). The naphthalene ring system is planar within 0.033 (2) $\AA$. As a result of steric effects, the substituent groups at atoms C 1 and C 4 are twisted away from the plane of the naphthalene ring system (Fig. 1). The O1/O2/C4/C11 and O3/O4/C1/C18 planes form dihedral angles of 20.4 (2) and 45.2 (1) ${ }^{\circ}$, respectively, with the C1-C4/C9/C10 plane. The dihedral angle between the $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 4 / \mathrm{C} 11$ and $\mathrm{C} 12-\mathrm{C} 17$ planes is $87.9(1)^{\circ}$, and that between the $\mathrm{O} 3 / \mathrm{O} 4 / \mathrm{C} 1 / \mathrm{C} 18$ and $\mathrm{C} 19-\mathrm{C} 24$ planes is $67.4(1)^{\circ}$. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving the naphthalene ring system and the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring (Table 2).


Figure 1
The structure of (I), showing $30 \%$ probability displacement ellipsoids and the atomic numbering.

Received 29 March 2006
Accepted 30 March 2006

[^0]
## Diphenyl naphthalene-1,4-dicarboxylate

## Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.047$
$w R$ factor $=0.119$
Data-to-parameter ratio $=10.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

## Experimental

Compound (I) was prepared according to the reported procedure of Strey \& Voss (1998). Brown single crystals suitable for X-ray diffraction study were obtained by recrystallization from dimethyl sulfoxide.

## Crystal data

| $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{O}_{4}$ | $Z=4$ |
| :--- | :--- |
| $M_{r}=368.37$ | $D_{x}=1.360 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Monoclinic, $P 2_{\downarrow} / c$ | Mo $K \alpha$ radiation |
| $a=13.984(7) \AA$ | $\mu=0.09 \mathrm{~mm}^{-1}$ |
| $b=5.7797(17) \AA$ | $T=292(2) \mathrm{K}$ |
| $c=22.283(6) \AA$ | Block, brown |
| $\beta=92.15(3)^{\circ}$ | $0.30 \times 0.30 \times 0.23 \mathrm{~mm}$ |
| $V=1799.7(12) \AA^{3}$ |  |

## Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
3304 measured reflections
3280 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.119$
$S=0.89$
3280 reflections
317 parameters

All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0493 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\max }=0.18 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| $\mathrm{O} 1-\mathrm{C} 11$ | $1.179(3)$ | $\mathrm{O} 3-\mathrm{C} 18$ | $1.188(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{C} 11$ | $1.346(3)$ | $\mathrm{O} 4-\mathrm{C} 18$ | $1.363(3)$ |
| $\mathrm{O} 2-\mathrm{C} 12$ | $1.407(3)$ | $\mathrm{O} 4-\mathrm{C} 19$ | $1.404(3)$ |
|  |  |  |  |
| $\mathrm{C} 11-\mathrm{O} 2-\mathrm{C} 12$ | $117.4(2)$ | $\mathrm{C} 17-\mathrm{C} 12-\mathrm{O} 2$ | $118.4(3)$ |
| $\mathrm{C} 18-\mathrm{O} 4-\mathrm{C} 19$ | $117.3(2)$ | $\mathrm{O} 3-\mathrm{C} 18-\mathrm{O} 4$ | $122.6(3)$ |
| $\mathrm{O} 1-\mathrm{C} 11-\mathrm{O} 2$ | $121.0(3)$ | $\mathrm{O} 3-\mathrm{C} 18-\mathrm{C} 1$ | $124.9(3)$ |
| $\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 4$ | $127.4(3)$ | $\mathrm{O} 4-\mathrm{C} 18-\mathrm{C} 1$ | $112.4(2)$ |
| $\mathrm{O} 2-\mathrm{C} 11-\mathrm{C} 4$ | $111.6(3)$ | $\mathrm{C} 20-\mathrm{C} 19-\mathrm{O} 4$ | $118.3(3)$ |
| $\mathrm{C} 13-\mathrm{C} 12-\mathrm{O} 2$ | $119.2(3)$ | $\mathrm{C} 24-\mathrm{C} 19-\mathrm{O} 4$ | $119.9(3)$ |

Table 2
Hydrogen-bond geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| C5-H5 $\cdots \mathrm{O} 1$ | $0.95(2)$ | $2.23(2)$ | $2.884(4)$ | $125(2)$ |
| C5-H5 ${ }^{\mathrm{i}}$ | $0.95(2)$ | $2.60(2)$ | $3.264(4)$ | $128(2)$ |
| C8-H8 $\cdots$ O4 | $0.94(2)$ | $2.34(2)$ | $2.951(4)$ | $123(2)$ |
| C2-H2 $\cdots \mathrm{Cg} 1^{\mathrm{ii}}$ | $0.96(3)$ | $2.65(3)$ | $3.469(4)$ | $143(2)$ |
| C6-H6 $\mathrm{Cg}^{\mathrm{i}}$ | $0.99(3)$ | $2.76(3)$ | $3.596(4)$ | $142(2)$ |

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2} . C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10$ and $\mathrm{C} 12-\mathrm{C} 17$ benzene rings.

All H atoms were located in a difference Fourier map and refined isotropically. The range of $\mathrm{C}-\mathrm{H}$ bond lengths is 0.92 (2)-1.01 (3) $\AA$.

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Centre for Test and Analysis, Sichuan University, for financial support.

## References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fukuzumi, T., Tajiri, T., Tsukada, H. \& Yoshida, J. (1994). Jpn Patent JP 06298 919.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gabe, E. J., White, P. S. \& Enright, G. D. (1993). DIFRAC. National Research Council Canada, Ottawa.
Jing, L.-H., Qin, D.-B., Mao, Z.-H., Gu, S.-J. \& Zhang, H.-X. (2005). Acta Cryst. E61, o4365-o4366.
Kuromya, Y., Hirano, E. \& Samu, F. (1997). Jpn Patent JP 09048177.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Strey, K. \& Voss, J. (1998). J. Chem. Res. (S.), pp. 110-111, (M.), pp. 648-682.
Tsukada, H., Tajiri, T., Fukuzumi, T. \& Yoshida, J. (1994). Jpn Patent JP 06298 918.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

